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Abstract 

Legumes are essential for global nutrition and agriculture, providing significant protein, vital 
nutrients, and beneficial compounds. African yam bean (Sphenostylis stenocarpa), an important 
legume for agriculture and food security, faces challenges like high anti-nutritional factors, hard 
seed coats, long lifecycles, and photoperiod sensitivity. Their genetic diversity and that of related 
legumes remain underexplored. The Maturase K (matK) gene, a chloroplast marker with a high 
substitution rate, is widely used in studying genetic diversity and species evolution. This study 
focuses on the matK gene in legumes, specifically analysing S. stenocarpa and related species, to 
enhance understanding of their genetic diversity and potential for improvement. Nucleotide 
sequences for several leguminous species, including S. stenocarpa, Sphenostylis angustifolia, Vigna 
aconitifolia, Vigna angularis, Vigna umbellata, Vigna mungo, Cajanus cajan, Phaseolus vulgaris, and 
Glycine max were retrieved from NCBI database. Phylogenetic relationships were assessed using 
MEGA 6 software with Clustal W alignments and 1000 bootstrap resampling. The secondary and 
tertiary structures of proteins of the matK gene were predicted using the GORIV and Phyre2 tools, 
respectively. Phylogenetic analysis revealed two primary clusters: one containing exclusively P. 
vulgaris with high bootstrap support, and another encompassing the remaining legumes, further 
divided into sub-clusters with C. cajan distinct from Vigna species. Structural analysis showed S. 
stenocarpa exhibited the highest percentage of alpha helix (36.54%), while C. cajan displayed the 
lowest alpha helix and highest random coil. Notably, P. vulgaris had the highest percentage of 
extended strands (35.21%). Tertiary structure predictions indicated that while Vigna species shared 
similar folding patterns, P. vulgaris and C. cajan had unique tertiary structures. These findings 
underscore significant evolutionary differences among the legumes and highlight the potential for 
genetic enhancement of these important crops. 
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Introduction 

Legumes represent a diverse plant family that offers a myriad of resources essential for human 
consumption and agriculture. These plants are significant sources of protein, oils, minerals, and 
various nutraceuticals [1,2,3]. Grain legumes, including African yam bean (S. stenocarpa) and adzuki 
bean (V. angularis), serve as essential staple foods, providing more than 33% of the dietary protein 
consumed by humans. Key contributors to this protein supply include species like cowpea (V. 
unguiculata), pigeon pea (C. cajan), and common bean (P. vulgaris). [4,5,6]. Additionally, refined oils, 
particularly from soybeans (G. max), have widespread industrial uses, including in paints, diesel 
fuels, and solvents. Legumes also accumulate significant phytochemicals like isoflavonoids, linked to 
health benefits [7,8]. A notable characteristic of legumes is their ability to form symbiotic 
relationships with soil microbes, particularly rhizobia, which facilitate nitrogen fixation through the 
development of root nodules [9,10,11]. This capability is crucial for enhancing soil fertility and 
increasing agricultural productivity, especially in sub-Saharan Africa, where over 60% of the 
population relies on these crops for protein intake [11,12]. 
 
Regrettably, the agro-biodiversity of many leguminous species has declined significantly in Nigeria, 
largely due to a lack of awareness about their economic potential, inefficient propagation, 
inadequate processing methods, and limited market access [3,13]. Furthermore, minimal genetic 
improvement has been aimed at enhancing these crops' agronomic and nutritional quality. 
Understanding these legumes' genetic makeup and protein profiles is essential for promoting their 
improvement and utilisation [14,15]. The characterization of existing germplasm can be effectively 
achieved through robust genetic diversity analyses, employing molecular and sequence data. 
[3,14,16,17,18,19,20]. 
 
Recent studies have highlighted the utility of chloroplast, mitochondrial, and nuclear genes for 
elucidating evolutionary trends at the genus level [21,22,23,24,25]. By using a combination of 
chloroplast, mitochondrial, and nuclear genes, scientists can create more precise phylogenetic trees. 
This approach enhances the understanding of evolutionary connections, helps clear up taxonomic 
uncertainties, and enables the differentiation of species that are closely related within the same 
genus. [24,25] Among these, the maturase K (matK) gene has emerged as a significant marker for 
plant molecular systematics and evolution due to its rapid evolutionary rates [26,27,28,29] Rapid 
nucleotide substitutions and limited occurrences of frameshift insertions and premature stop codons 
necessitate careful analysis of matK's functionality in various plant species [30]. The RNA transcripts 
of several chloroplast genes, including trnK and trnA, depend on matK for proper functioning 
[29,31,32,33]. Given the significance of matK in phylogenetic studies, this research aims to 
characterize the matK gene and analyze protein structural variations in selected legumes, specifically 
S. stenocarpa, S. angustifolia, V. aconitifolia, V. angularis, V. umbellata, V. mungo, C. cajan, P. 
vulgaris, and G. max. By employing bioinformatics tools, this study seeks to assess how the 
secondary and tertiary structures of matK gene vary among these species, providing insights into 
their genetic relationships and potential for improvement. 
 
Materials and Methods 
 
Study location 
The in-silico analysis was conducted in the Bioinformatics Laboratory of the Department of Genetics 
and Biotechnology at the University of Calabar, Calabar. 
 
Retrieval of Nucleotide and Amino Acid Sequences  
Nucleotide sequences for African yam beans and related legumes were downloaded from the 
National Center for Biotechnology Information (NCBI) database in FASTA format. The analysis 
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considered sequences from species including S. stenocarpa; AY582977.1, S. angustifolia; JN008190.1, 
AY582978.1, V. aconitifolia; MH311596.1, MH311594.1, MH311592.1, V. angularis MH311581.1, 
MH311577.1, MH311580.1, V. umbellate MH311601.1, MH311600.1, MH311598.1 , V. mungo; 
MH311602.1, MH311606.1, MH311605.1, C. cajan JN228940.1, OQ289261.1, MN166627.1 , P. vulgaris; 
LC578842.1, LC578844.1, LC578843.1, and G. max; MW316063.1, MT23931.7.1, MH659986.1 .  
 
Phylogenetic Analysis of matK gene in African yam bean and related legumes.  
Molecular Evolutionary Genetic Analysis (MEGA) software version 6.0 was used to analyse the 
phylogenetic relationships. Clustal W was utilised for nucleotide sequence alignment, with gaps 
excluded from the analysis. Phylogenetic trees were constructed using 1000 bootstrap replicates 
[34]. 
 
Prediction of Secondary and Tertiary Protein Structures  
The GORIV online tool used amino acid sequences of the matK gene to predict secondary structures. 
The canonical amino acid sequences obtained from the NCBI database through the Phyre2 server 
were used to model tertiary protein structures as described by Edem et al. [34] The protein chain 
patterns in matK gene from the legume varieties were analysed using the Simple Modular 
Architecture Research Tool, available at https://smart.embl-heidelberg.de/. To predict the three-
dimensional structure of the proteins, Phyre2 online software was employed, utilising the reference 
protein sequence obtained from the NCBI database. The samples chosen for analysis of protein 
patterns and structures were selected based on their classification in the phylogenetic tree. 
 

Results 
 
Phylogenetic of selected legumes  
Figure 1 illustrates the phylogenetic relationships among the selected legume species. There were 
two major clusters. The first cluster was made of all the samples of P. vulgaris with 100% bootstrap. 
The second major cluster consisted of all the remaining legumes. In the second major cluster, two 
sub-clusters were generated where C. cajan occupied one of the Vigna genes found on some sub-
clusters. In general, the legumes were grouped into specific clusters based on their relatedness at 
both the generic and specific levels. 
 
Protein structure variation 
Table 1 and Figures 2-10 display the findings on protein structure variations at both the secondary 
and tertiary levels. From Table 1, there were variations in the secondary protein structure as 
revealed by the percentage of alpha helix, extended strand, and random coil. All the Vigna legumes 
had similar percentages of alpha helix, extended strand, and random coils. S. stenocarpa had the 
highest percentage of alpha helix (36.54%) while C. cajan had the lowest. However, C. cajan had the 
highest random coil. The extended strand was more in the amino acid square of P. vulgaris (35.21%). 
Similar results were obtained for the tertiary protein structure of the selected legumes. All species 
from the Vigna genus had similar folding showing the alpha helix, extended strand as random coil. 
From Figure 7, it was obvious that P. valgarius had quite dissimilar folding patterns from the other 
species of legumes. Similarly, C. cajan also shows a different folding pattern from other legumes 
used in the present study. 
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 MH311581.1 Vigna angularis

 MH311577.1 Vigna angularis

 MH311580.1 Vigna angularis

 MH311601.1 Vigna umbellata

 MH311600.1 Vigna umbellata

 MH311598.1 Vigna umbellata

 MH311602.1 Vigna mungo

 MH311606.1 Vigna mungo

 MH311605.1 Vigna mungo

 MH311596.1 Vigna aconitifolia

 MH311594.1 Vigna aconitifolia

 MH311592.1 Vigna aconitifolia

 AY582977.1 Sphenostylis stenocarpa

 JN008190.1 Sphenostylis angustifolia

 AY582978.1 Sphenostylis angustifolia

 MW316063.1 Glycine max

 MT239317.1 Glycine max

 MH659986.1 Glycine max

 JN228940.1 Cajanus cajan

 OQ289261.1 Cajanus cajan

 MN166627.1 Cajanus cajan

 LC578842.1 Phaseolus vulgaris
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 LC578843.1 Phaseolus vulgaris
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Figure 1: Phylogenetic relationship between selected legumes based on matK gene 
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Table 1: Subunits of the secondary protein structure in the matK gene of African yam bean and its 
related legume species. 

Subunit (%) S. 
stenocarpa 

S. 
angustifolia 

P. 
vulgaris 

V. 
angularis 

V. 
mungo 

V. 
aconitifolia 

V. 
umbellata 

C. 
cajan 

G. 
max 

Alpha helix 36.54 35.58 25.29 29.73 29.61 29.13 29.13 17.70 24.76 

Extended 
strand 

27.40 29.33 36.21 27.80 27.67 30.58 27.67 31.10 35.24 

Random coil 36.06 35.10 38.51 42.44 42.44 40.29 43.20 51.20 40.00 
 

   
Figure 2: The tertiary structure of the matK 
protein in V. angularis. 

Figure 3; The tertiary structure of the matK 
protein in V. mungo 

   
Figure 4: The tertiary structure of the matK 
protein in V. aconitifolia. 

Figure 5: The tertiary structure of the matK 
protein in V. umbellata 
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Figure 6: The tertiary structure of the 
matK protein in G. max 

Figure 7: The tertiary structure of the matK 
protein in P. vulgaris 

    
Figure 8: The tertiary structure of the 
matK protein in C. cajan 

Figure 9: The tertiary structure of the matK 
protein in S. stenocarpa 

 
Figure 10: The tertiary structure of the matK 
protein in S. angustifolia 

  



Journal of Underutilized Legumes 7 (1)  Edu et al. 
 

 18  
 
 

Discussion 
 
The phylogenetic analysis presented in Figure 1 delineates two major clusters among the selected 
legumes. The first cluster is exclusively composed of P. vulgaris with 100% bootstrap support, 
indicating a strong and reliable monophyletic grouping for this species. This finding is consistent with 
Edem and Osuagwu [15], who observed that P. vulgaris consistently forms a distinct clade with rbcL 
in legume phylogenies. The second major cluster includes the remaining legumes, which further 
segregates into two sub-clusters. One sub-cluster contains C. cajan, while the other encompasses 
various species from the Vigna genus. The clear distinction of C. cajan into its sub-cluster highlights 
its unique evolutionary lineage, this clustering reinforces our understanding of the evolutionary 
relationships within the legume family. 
 
The variations in secondary structure composition among the studied legume species offer insights 
into their structural adaptations and potential functional roles [35]. The high alpha-helix content in S. 
stenocarpa (36.54%) suggests a structural adaptation that prioritizes stability and compactness. 
Alpha helices are often associated with robust protein stability and a defined structural framework 
[36], which may be critical for the physiological functions and resilience of S. stenocarpa in its 
ecological niche. 
 
In contrast, C. cajan exhibited the lowest alpha-helix percentage (17.70%) and the highest random 
coil percentage (51.20%), indicative of a more flexible protein structure. Random coils are 
unstructured regions that can allow greater conformational freedom and adaptability [37]. This 
flexibility might enable C. cajan to respond to environmental stresses, such as drought, or play a role 
in its metabolism, which may demand dynamic interactions with other biomolecules. P. vulgaris, 
with the highest percentage of extended strands (35.21%), highlights another form of structural 
specialization. Extended strands, commonly forming beta-sheets, are known for their role in creating 
stable, planar protein structures that may be involved in molecular recognition or binding [38]. This 
feature could align with specific functional demands of P. vulgaris, such as its enzymatic activities or 
interaction with other biomolecules essential for its growth and reproduction. 
 
The observed tertiary structures of the legume species exhibit relatively consistent folding patterns, 
suggesting a high degree of structural conservation among these legumes. This consistency could 
reflect conserved evolutionary pressures or functional requirements associated with their shared 
ecological niches and physiological roles [39]. In contrast, P. vulgaris displays a notably different 
tertiary folding pattern, as highlighted in Figure 6. This deviation may indicate unique adaptive 
strategies or evolutionary divergence, potentially driven by specific environmental factors, distinct 
metabolic demands, or differences in selective pressures that have influenced its genome and 
protein folding mechanisms [40] 
 
Similarly, the unique tertiary structures observed in C. cajan and S. stenocarpa (Figures 7 and 8) 
underscore their distinct evolutionary trajectories. These structural distinctions could be attributed 
to gene expression, sequence variation, or environmental interaction differences [41]. For instance, 
C. cajan (pigeon pea) is well-adapted to drought-prone areas, which may influence its molecular 
adaptations [42] S. stenocarpa, being less studied, represents a valuable model for exploring 
underutilized crop diversity, as its structural uniqueness might relate to untapped genetic traits for 
resilience or nutritional value [43]. 
 
In conclusion, this research underscores the importance of understanding genetic and protein 
structural diversity in legumes, which could enhance the development of improved varieties with 
better resilience, nutritional quality, and adaptability, ultimately contributing to food security, 
particularly in sub-Saharan Africa. Further research should examine the molecular mechanisms 
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behind the structural adaptations in S. stenocarpa and C. cajan, focusing on genetic markers and 
regulatory pathways. Functional genomics techniques can provide insights into their ecological and 
nutritional roles. Additionally, studying structural variations in legumes like P. vulgaris could aid 
breeding efforts to improve crop yield, stress resistance, and nutritional quality. 
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